neurotorch package¶
Subpackages¶
- neurotorch.callbacks package
- Submodules
- neurotorch.callbacks.base_callback module
BaseCallbackBaseCallback.DEFAULT_HIGH_PRIORITYBaseCallback.DEFAULT_LOW_PRIORITYBaseCallback.DEFAULT_MEDIUM_PRIORITYBaseCallback.DEFAULT_PRIORITYBaseCallback.UNPICKEABLE_ATTRIBUTESBaseCallback.__init__()BaseCallback.close()BaseCallback.extra_repr()BaseCallback.get_checkpoint_state()BaseCallback.instance_counterBaseCallback.load_checkpoint_state()BaseCallback.on_batch_begin()BaseCallback.on_batch_end()BaseCallback.on_epoch_begin()BaseCallback.on_epoch_end()BaseCallback.on_iteration_begin()BaseCallback.on_iteration_end()BaseCallback.on_optimization_begin()BaseCallback.on_optimization_end()BaseCallback.on_pbar_update()BaseCallback.on_train_begin()BaseCallback.on_train_end()BaseCallback.on_trajectory_end()BaseCallback.on_validation_batch_begin()BaseCallback.on_validation_batch_end()BaseCallback.on_validation_begin()BaseCallback.on_validation_end()BaseCallback.start()
CallbacksListCallbacksList.__init__()CallbacksList.append()CallbacksList.close()CallbacksList.get_checkpoint_state()CallbacksList.load_checkpoint_state()CallbacksList.on_batch_begin()CallbacksList.on_batch_end()CallbacksList.on_epoch_begin()CallbacksList.on_epoch_end()CallbacksList.on_iteration_begin()CallbacksList.on_iteration_end()CallbacksList.on_optimization_begin()CallbacksList.on_optimization_end()CallbacksList.on_pbar_update()CallbacksList.on_train_begin()CallbacksList.on_train_end()CallbacksList.on_trajectory_end()CallbacksList.on_validation_batch_begin()CallbacksList.on_validation_batch_end()CallbacksList.on_validation_begin()CallbacksList.on_validation_end()CallbacksList.remove()CallbacksList.sort_callbacks_()CallbacksList.start()
- neurotorch.callbacks.checkpoints_manager module
CheckpointManagerCheckpointManager.CHECKPOINTS_META_SUFFIXCheckpointManager.CHECKPOINT_BEST_KEYCheckpointManager.CHECKPOINT_FILE_STRUCTCheckpointManager.CHECKPOINT_ITRS_KEYCheckpointManager.CHECKPOINT_ITR_KEYCheckpointManager.CHECKPOINT_METRICS_KEYCheckpointManager.CHECKPOINT_OPTIMIZER_STATE_DICT_KEYCheckpointManager.CHECKPOINT_SAVE_PATH_KEYCheckpointManager.CHECKPOINT_STATE_DICT_KEYCheckpointManager.CHECKPOINT_TRAINING_HISTORY_KEYCheckpointManager.DEFAULT_PRIORITYCheckpointManager.SAVE_EXTCheckpointManager.SUFFIX_SEPCheckpointManager.__init__()CheckpointManager.checkpoints_meta_pathCheckpointManager.close()CheckpointManager.extra_repr()CheckpointManager.get_checkpoint_filename()CheckpointManager.get_save_name_from_checkpoints()CheckpointManager.load_checkpoint()CheckpointManager.load_mode_to_suffixCheckpointManager.on_iteration_end()CheckpointManager.on_pbar_update()CheckpointManager.save_checkpoint()CheckpointManager.save_checkpoints_meta()CheckpointManager.save_on()CheckpointManager.start()
LoadCheckpointMode
- neurotorch.callbacks.convergence module
- neurotorch.callbacks.early_stopping module
EarlyStoppingEarlyStoppingOnNaNEarlyStoppingOnStagnationEarlyStoppingOnTimeLimitEarlyStoppingOnTimeLimit.CURRENT_SECONDS_COUNT_KEYEarlyStoppingOnTimeLimit.DELTA_SECONDS_KEYEarlyStoppingOnTimeLimit.__init__()EarlyStoppingOnTimeLimit.extra_repr()EarlyStoppingOnTimeLimit.get_checkpoint_state()EarlyStoppingOnTimeLimit.load_checkpoint_state()EarlyStoppingOnTimeLimit.on_iteration_end()EarlyStoppingOnTimeLimit.start()EarlyStoppingOnTimeLimit.update_flags()
EarlyStoppingThreshold
- neurotorch.callbacks.events module
- neurotorch.callbacks.history module
TrainingHistoryTrainingHistory.DEFAULT_PRIORITYTrainingHistory.__init__()TrainingHistory.append()TrainingHistory.concat()TrainingHistory.create_plot()TrainingHistory.extra_repr()TrainingHistory.get()TrainingHistory.get_item_at()TrainingHistory.insert()TrainingHistory.items()TrainingHistory.keys()TrainingHistory.max()TrainingHistory.max_item()TrainingHistory.min()TrainingHistory.min_item()TrainingHistory.on_iteration_end()TrainingHistory.plot()TrainingHistory.update_fig()
- neurotorch.callbacks.lr_schedulers module
- neurotorch.callbacks.training_visualization module
- Module contents
ForesightTimeStepUpdaterOnTargetForesightTimeStepUpdaterOnTarget.DEFAULT_PRIORITYForesightTimeStepUpdaterOnTarget.__init__()ForesightTimeStepUpdaterOnTarget.get_hh_memory_size_from_y_batch()ForesightTimeStepUpdaterOnTarget.on_batch_begin()ForesightTimeStepUpdaterOnTarget.on_batch_end()ForesightTimeStepUpdaterOnTarget.on_train_end()ForesightTimeStepUpdaterOnTarget.start()
- neurotorch.init package
- neurotorch.learning_algorithms package
- Submodules
- neurotorch.learning_algorithms.bptt module
BPTTBPTT.CHECKPOINT_OPTIMIZER_STATE_DICT_KEYBPTT.DEFAULT_OPTIMIZER_CLSBPTT.OPTIMIZER_PARAMS_GROUP_IDXBPTT.__init__()BPTT.apply_criterion()BPTT.create_default_optimizer()BPTT.extra_repr()BPTT.get_checkpoint_state()BPTT.initialize_param_groups()BPTT.load_checkpoint_state()BPTT.on_optimization_begin()BPTT.on_optimization_end()BPTT.on_validation_batch_begin()BPTT.start()
- neurotorch.learning_algorithms.eprop module
EpropEprop.CHECKPOINT_FEEDBACK_WEIGHTS_KEYEprop.CHECKPOINT_OPTIMIZER_STATE_DICT_KEYEprop.DEFAULT_FEEDBACKS_GEN_STRATEGYEprop.DEFAULT_FEEDBACKS_STR_NORM_CLIP_VALUEEprop.DEFAULT_OPTIMIZER_CLSEprop.DEFAULT_Y_KEYEprop.FEEDBACKS_GEN_FUNCSEprop.OPTIMIZER_OUTPUT_PARAMS_GROUP_IDXEprop.OPTIMIZER_PARAMS_GROUP_IDXEprop.__init__()Eprop.compute_errors()Eprop.compute_learning_signals()Eprop.decorate_forwards()Eprop.eligibility_traces_zeros_()Eprop.get_checkpoint_state()Eprop.initialize_feedback_weights()Eprop.initialize_layers()Eprop.initialize_output_layers()Eprop.initialize_output_params()Eprop.initialize_param_groups()Eprop.initialize_params()Eprop.load_checkpoint_state()Eprop.make_feedback_weights()Eprop.on_batch_begin()Eprop.on_batch_end()Eprop.start()Eprop.update_grads()
- neurotorch.learning_algorithms.learning_algorithm module
- neurotorch.learning_algorithms.rls module
RLSRLS.CHECKPOINT_OPTIMIZER_STATE_DICT_KEYRLS.CHECKPOINT_P_STATES_DICT_KEYRLS.__init__()RLS.curbd_step_method()RLS.get_checkpoint_state()RLS.grad_mth_step()RLS.initialize_P_list()RLS.inputs_mth_step()RLS.jacobian_mth_step()RLS.load_checkpoint_state()RLS.on_batch_begin()RLS.on_batch_end()RLS.on_optimization_begin()RLS.optimization_step()RLS.outputs_mth_step()RLS.scaled_jacobian_mth_step()RLS.start()
- neurotorch.learning_algorithms.tbptt module
- Module contents
- neurotorch.metrics package
- Submodules
- neurotorch.metrics.base module
- neurotorch.metrics.classification module
ClassificationMetricsClassificationMetrics.__call__()ClassificationMetrics.accuracy()ClassificationMetrics.auc()ClassificationMetrics.compute_y_true_y_pred()ClassificationMetrics.confusion_matrix()ClassificationMetrics.f1()ClassificationMetrics.get_all_metrics_names_to_func()ClassificationMetrics.precision()ClassificationMetrics.recall()
- neurotorch.metrics.losses module
- neurotorch.metrics.regression module
RegressionMetricsRegressionMetrics.EPSILONRegressionMetrics.__call__()RegressionMetrics.compute_p_var()RegressionMetrics.compute_y_true_y_pred()RegressionMetrics.d2_tweedie()RegressionMetrics.get_all_metrics_names_to_func()RegressionMetrics.mean_absolute_error()RegressionMetrics.mean_squared_error()RegressionMetrics.p_var()RegressionMetrics.r2()
- Module contents
- neurotorch.modules package
- Subpackages
- Submodules
- neurotorch.modules.base module
BaseModelBaseModel.__call__()BaseModel.__init__()BaseModel.apply_input_transform()BaseModel.apply_output_transform()BaseModel.build()BaseModel.checkpoints_meta_pathBaseModel.deviceBaseModel.forward()BaseModel.get_default_input_transform()BaseModel.get_default_output_transform()BaseModel.get_prediction_log_proba()BaseModel.get_prediction_proba()BaseModel.get_prediction_trace()BaseModel.get_raw_prediction()BaseModel.hard_update()BaseModel.infer_sizes_from_inputs()BaseModel.input_sizesBaseModel.is_builtBaseModel.load_checkpoint()BaseModel.output_sizesBaseModel.soft_update()BaseModel.to()BaseModel.to_onnx()
NamedModuleSizedModule
- neurotorch.modules.functions module
- neurotorch.modules.sequential module
SequentialSequential.__init__()Sequential.build()Sequential.build_layers()Sequential.deviceSequential.forward()Sequential.get_all_layers()Sequential.get_all_layers_names()Sequential.get_and_reset_regularization_loss()Sequential.get_dict_of_layers()Sequential.get_layer()Sequential.get_layers()Sequential.get_prediction_log_proba()Sequential.get_prediction_proba()Sequential.get_raw_prediction()Sequential.infer_sizes_from_inputs()Sequential.initialize_weights_()
- neurotorch.modules.sequential_rnn module
SequentialRNNSequentialRNN.__init__()SequentialRNN.build()SequentialRNN.forward()SequentialRNN.get_and_reset_regularization_loss()SequentialRNN.get_fmt_prediction()SequentialRNN.get_last_prediction()SequentialRNN.get_max_prediction()SequentialRNN.get_mean_prediction()SequentialRNN.get_prediction_log_proba()SequentialRNN.get_prediction_proba()SequentialRNN.get_prediction_trace()SequentialRNN.get_raw_prediction()SequentialRNN.hh_memory_sizeSequentialRNN.out_memory_size
- neurotorch.modules.spike_funcs module
- neurotorch.modules.utils module
- neurotorch.modules.wrappers module
- Module contents
- neurotorch.regularization package
- neurotorch.rl package
- Submodules
- neurotorch.rl.agent module
AgentAgent.__init__()Agent.action_specAgent.continuous_actionsAgent.copy()Agent.copy_critic()Agent.copy_from_agent()Agent.copy_policy()Agent.decay_continuous_action_variances()Agent.deviceAgent.discrete_actionsAgent.format_batch_discrete_actions()Agent.forward()Agent.get_actions()Agent.get_continuous_action_covariances()Agent.get_default_checkpoints_meta_path()Agent.get_random_actions()Agent.get_values()Agent.hard_update()Agent.load_checkpoint()Agent.observation_specAgent.set_continuous_action_variances_with_itr()Agent.set_default_critic_kwargs()Agent.set_default_policy_kwargs()Agent.soft_update()Agent.to()
- neurotorch.rl.buffers module
AgentsHistoryMapsAgentsHistoryMaps.trajectoriesAgentsHistoryMaps.cumulative_rewardsAgentsHistoryMaps.__init__()AgentsHistoryMaps.clear()AgentsHistoryMaps.cumulative_rewards_as_arrayAgentsHistoryMaps.experience_countAgentsHistoryMaps.max_abs_rewardsAgentsHistoryMaps.mean_cumulative_rewardsAgentsHistoryMaps.propagate_all()AgentsHistoryMaps.propagate_and_get_all()AgentsHistoryMaps.terminals_countAgentsHistoryMaps.update_trajectories_()
BatchExperienceExperienceReplayBufferReplayBuffer.__init__()ReplayBuffer.capacityReplayBuffer.clear()ReplayBuffer.counterReplayBuffer.emptyReplayBuffer.extend()ReplayBuffer.fullReplayBuffer.get_batch_generator()ReplayBuffer.get_batch_tensor()ReplayBuffer.get_random_batch()ReplayBuffer.increase_capacity()ReplayBuffer.increment_counter()ReplayBuffer.load()ReplayBuffer.reset_counter()ReplayBuffer.save()ReplayBuffer.set_seed()ReplayBuffer.start_counter()ReplayBuffer.stop_counter()ReplayBuffer.store()
TrajectoryTrajectory.__init__()Trajectory.append()Trajectory.append_and_propagate()Trajectory.compute_horizon_rewards()Trajectory.cumulative_rewardTrajectory.is_empty()Trajectory.make_rewards_horizon()Trajectory.propagate()Trajectory.propagate_rewards()Trajectory.propagate_values()Trajectory.propagatedTrajectory.terminalTrajectory.terminal_rewardTrajectory.terminatedTrajectory.update_others()
- neurotorch.rl.curriculum module
CompletionCriteriaCurriculumCurriculum.__init__()Curriculum.add_lesson()Curriculum.channelsCurriculum.current_lessonCurriculum.is_completedCurriculum.lessonsCurriculum.map_reprCurriculum.on_iteration_end()Curriculum.on_iteration_start()Curriculum.teacher_bufferCurriculum.teachersCurriculum.update_channels()Curriculum.update_teachers()Curriculum.update_teachers_and_channels()
CurriculumEndIterationOutputLesson
- neurotorch.rl.ppo module
PPOPPO.CHECKPOINT_OPTIMIZER_STATE_DICT_KEYPPO.__init__()PPO.agentPPO.criticPPO.get_actions_from_batch()PPO.get_advantages_from_batch()PPO.get_checkpoint_state()PPO.get_returns_from_batch()PPO.get_values_from_batch()PPO.last_policyPPO.load_checkpoint_state()PPO.on_iteration_begin()PPO.on_optimization_begin()PPO.on_optimization_end()PPO.on_pbar_update()PPO.on_trajectory_end()PPO.policyPPO.start()PPO.update_params()
- neurotorch.rl.rl_academy module
GenTrajectoriesOutputRLAcademyRLAcademy.CUM_REWARDS_METRIC_KEYRLAcademy.TERMINAL_REWARDS_METRIC_KEYRLAcademy.__init__()RLAcademy.close()RLAcademy.copy_agent()RLAcademy.copy_policy()RLAcademy.envRLAcademy.generate_trajectories()RLAcademy.policyRLAcademy.reset_agents_history_maps_meta()RLAcademy.set_default_academy_kwargs()RLAcademy.train()
- neurotorch.rl.utils module
LinearTrainingHistoriesMapTrajectoryRendererbatch_dict_of_items()batch_numpy_actions()continuous_actions_distribution()discounted_cumulative_sums()env_batch_render()env_batch_reset()env_batch_step()format_numpy_actions()get_item_from_batch()get_single_action_space()get_single_observation_space()obs_batch_to_sequence()obs_sequence_to_batch()sample_action_space()space_to_continuous_shape()space_to_spec()
- Module contents
- neurotorch.trainers package
- Submodules
- neurotorch.trainers.classification module
- neurotorch.trainers.regression module
- neurotorch.trainers.trainer module
CurrentTrainingStateCurrentTrainingState.batchCurrentTrainingState.batch_is_trainCurrentTrainingState.batch_lossCurrentTrainingState.epochCurrentTrainingState.epoch_lossCurrentTrainingState.get_null_state()CurrentTrainingState.hh_batchCurrentTrainingState.infoCurrentTrainingState.iterationCurrentTrainingState.itr_metricsCurrentTrainingState.n_epochsCurrentTrainingState.n_iterationsCurrentTrainingState.objectsCurrentTrainingState.pred_batchCurrentTrainingState.stop_training_flagCurrentTrainingState.train_lossCurrentTrainingState.train_metricsCurrentTrainingState.update()CurrentTrainingState.val_lossCurrentTrainingState.val_metricsCurrentTrainingState.x_batchCurrentTrainingState.y_batch
TrainerTrainer.__init__()Trainer.apply_criterion_on_batch()Trainer.checkpoint_managersTrainer.force_overwriteTrainer.get_pred_batch()Trainer.learning_algorithmsTrainer.load_checkpoint_modeTrainer.load_state()Trainer.networkTrainer.sort_callbacks_()Trainer.stateTrainer.train()Trainer.training_historiesTrainer.update_info_state_()Trainer.update_itr_metrics_state_()Trainer.update_objects_state_()Trainer.update_state_()
TrainingState
- Module contents
- neurotorch.transforms package
- Submodules
- neurotorch.transforms.base module
- neurotorch.transforms.spikes_auto_encoder module
- neurotorch.transforms.spikes_decoders module
- neurotorch.transforms.spikes_encoders module
- neurotorch.transforms.vision module
- neurotorch.transforms.wrappers module
- Module contents
- neurotorch.utils package
- Submodules
- neurotorch.utils.autograd module
- neurotorch.utils.collections module
get_all_params_combinations()get_meta_name()get_meta_str()hash_meta_str()hash_params()list_insert_replace_at()list_of_callable_to_sequential()mapping_update_recursively()maybe_unpack_singleton_dict()save_params()sequence_get()unpack_out_hh()unpack_singleton_dict()unpack_tuple()unpack_x_hh_y()
- neurotorch.utils.formatting module
- neurotorch.utils.random module
- neurotorch.utils.visualise module
- Module contents
- neurotorch.visualisation package
Submodules¶
neurotorch.dimension module¶
- class neurotorch.dimension.Dimension(size: int | None = None, dtype: DimensionProperty = DimensionProperty.NONE, name: str | None = None)¶
Bases:
objectThis object is used to represent a dimension.
- size¶
The size of the dimension.
- Type:
int
- dtype¶
The type of the dimension.
- Type:
- name¶
The name of the dimension.
- Type:
str
- __init__(size: int | None = None, dtype: DimensionProperty = DimensionProperty.NONE, name: str | None = None)¶
Constructor for Dimension.
- Parameters:
size (int) – The size of the dimension.
dtype (DimensionProperty) – The type of the dimension.
name (str) – The name of the dimension.
- static from_int(size: int | None) Dimension¶
Create a Dimension from an integer.
- Parameters:
size (int) – The size of the dimension.
- Returns:
A dimension with the given size and None as dtype.
- Return type:
- static from_int_or_dimension(dimension: int | Dimension | None) Dimension¶
Create a Dimension from an integer or a Dimension.
- Parameters:
dimension (int or Dimension) – The dimension to convert.
- Returns:
A dimension with the given size and None as dtype if the input is an integer and the given dimension
if it is a Dimension. :rtype: Dimension
- class neurotorch.dimension.DimensionProperty(value)¶
Bases:
EnumEnum for dimension properties.
NONE: No dimension property. This type of dimension can be used for features, neurons, unknown, etc. TIME: Time dimension. This type of dimension can be used for time series. SPATIAL: Spatial dimension. This type of dimension can be used for spatial data like images, videos, etc.
- NONE = 0¶
- SPATIAL = 2¶
- TIME = 1¶
Module contents¶
NeuroTorch: A Python library for machine learning and neuroscience.